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ABSTRACT 

A linearized, two-level forecast model with known analytic solution is numerically integrated  to examine the 
behavior of the accumulated  error (truncation  and machine word "round-off" error).  The results indicate  that  for 
linear models numerically integrated  with centered  differences: 1) the  ratio of space increment to  disturbance wave- 
length  that yields sufficient accuracy in a  reasonable amount of computation real time is  on the order of 10-1 to 10-2; 2) 
the largest time increment  consistent with  the  stability criterion  should be used for computation expediency. 

Computations performed on computers  having different word lengths did not yield significant differences in the 
results for this model integrated  out  to 7 days. 

1. INTRODUCTION 
The stability  and  accuracy of various finite-difference 

approximations to differential equations  encountered in 
fluid dynamics problems have been  investigated by 
various  authors.  The  reader is directed to  the work of 
Richtmyer (1962, 1957), Pischer (1965) , Lilly (1965), 
Kurihara (1965) , Phillips (1960) , Molenkamp (1968) , 
Crowley (1968), Easahara (1965), Holton (1967), and 
Young (1968) for  a  detailed overview of the difference 
forms  encountered in meteorological problems. Forsythe 
and Wasow (1960) present an excellent introduction  to 
the general  mathematical problem. 

I n  this  paper, we examine the accumulated  error 
incurred  during the time  integration of a  linearized, 
two-level forecast model that  has a  known  analytic 
solution. The accumulated  error a t  a  given  time is defined 
as  the difference between the  analytic  and  the  numerical 
solutions and is produced by  both  truncation  and round-off 
(machine word-size truncation).  Integrations were per- 
formed  with  various values of the space and time incre- 
ments  and  with different machine word lengths  in  order 
to determine 1) the  importance of varying At with fixed 
As (providing the  stability criterion  is  met) in terms of 
reducing the accumulated  error  and 2) the  relative effects 
of truncation error  versus round-off error  in the accumu- 
lated  error. 

8.  THE FORECAST MODEL 

The numerical model forecasts the  perturbation wind 
shear  and  geopotential  thickness  for the 750- to 250-mb 
layer over a 2000-km square bounded  on the  south  by 
the  Equator.  The  analytic equations govern linear, non- 
viscous, adiabatic,  quasi-hydrostatic  &plane flow on a 
stagnant base state. For a  detailed  description of the 
model, the equations, and  their  solutions, see Rosenthal 
(1965) and Koss (1967). The vertical structure of the 
model is  given in figure 1. The model equations  are 

and 

where 
A 
zc=u~-u3, 
v =u1 -u3, 
A 

and 
A 

$=41-$3; 

t h k ,  ,vli are  the wind velocity components at  level k .  $K is 
the geopotential of the  kth pressure level, p2=50 cb. 
az = 3 mts  units (section 3) is the mean static  stability, 
fl=dj/dy, where j is the Coriolis parameter, y is distance 
north from the  Equator,  and x is east-west  distance 
measured positive  eastward. Equation (IC) was obtained 
by discretizing the  continuity  and  thermodynamic equa- 
tions  in the vertical  and combining the two resulting 
equations.  Here, w ~ = w ~ = O  was used as a boundary 
condition. A solution (see KOSS, 1967, for details)  is 
given by 

n.nd 

where 

+E2, k=-) , and L is the wavelength. 2- 2R 
2 L 

The c is the phase speed of the meteorologically significant 
solution which is obtained by solving the frequency 
equation 

~ ~ - i ~ i [ k Z r ~ + ~ S + 2 a p r l ~ - ~ = Q  1 r2P 

with a=l .  This  particular  solution gives a  meridional 
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FIGURE 1.-Vertical structure of the model; u, c, and 4 are defined 
a t  levels 1 and 3; w=dp/dt is defined a t  levels 0, 2, and 4. 

perturbation  velocity  component which is  asymmetric 
about  the  Equator  and  tends to  zero with increasing 
distance  from  the  Equator. 

The finite-difference scheme used in  the  integrations 
mas the familiar  centered difference (leapfrog) scheme 
which has  the following well-known properties: 

(I) conditional  computational  stability, 
(11) no changes in wave  amplitude  result from 

the  integration, 
(111) fictitious changes in phase speed occur dur- 

ing the  integration, 
(IV) splitting of solutions at  alternate time  steps 

due to the presence of the "computa- 
tional" mode introduced by tthe use of a. 
second-order approximation to a first- 
order  derivative  (Kurihara, 1965, and 
page 73 of Phillips, 1960), and 

(V) the uncoupling of solutions of a  linear 
system of equations at  alternate  time 
steps  due  to  the use of centered difference 
approximations  to both  the space  and 
time  derivatives  (Platzman, 1958). 

Property (V) does not manifest itself in  this  study since 
the equations  are coupled a t  alternate  time  steps through 
the Coriolis. terms.. 

The "leapfrog" difference analog of equations (la,  b, 
and c)  is 

and 

where As is the space  increment  in  both  the z ( j )  and y (i) 
directions and At is the time  increment. A forward  time 
difference set of equations is used to  initiate  the inte- 
gratiohs. 

3. RESULTS 
The following values of parameters were used in all of 

TABLE 1 .4ornpar i son  of the  Jloating-point  fomnat of the 32- and 
%-bit  word  used in the  numerical  integrations. S refers  to a single 
precision  word, D refers to  a  double  precision  word. 

36bit word 32bit word 
- 

Characteristic __.._.____ .-. 
7-bit D 
7-bit S 7-bit S 

Mantissa-.. ..  .. . . -.  -. . . .-. 24-bit - 6 hexadecimal  digit S %bit S 
%-bit - 14 hexadecimal  digit D 

Significance  (decimal) -. . . . -7.2-digit S -9digit S 
-16.Sdigit D 

the  integrations: 
L=2000 km, 
e=-2.0827 m sec", 
@=2.2865X 10-l' (m sec)", 
$-=5 m sec", and 
a=3  mts units. - 

The  initial fields of 4, a, and 3 were computed using equa- 
tions @a, b,  and c) with t=O.  During  the  integrations 
1) cyclic continuity was used in computing the tendencies 
a t  the east-west boundaries (which is reasonable since the 
solutions  are neutral waves) and 2) the tendencies a t  the 
north-south  boundaries were computed  from  the  analytic 
expressions to  avoid using one-sided space differences. 

The integrations  are divided into two sets:  the first 
set was  obtained on a  computer  having  a 36-bit binary 
word and the second from a 32-bit (hexadecimal) word. 
All integrations were performed in normalized floating- 
point  arithmetic.  Table 1 gives the accuracy  characteristic 
of these word sizes. 

The measure of the accumulated  error used here  is the 
root-mean-square  error (RMSE) given by 

{ & [c 1=1 5 j = l  ( ~ , , - m ~ ] } "  

where Filj is the value of the  analytic  solution at  the 
(i,j)th grid point, F:5 is the  result of the time  integration 
at  the  same  point,  and I*J is the  total  number of grid 
points. 

THE  INTEGRATIONS IN SET 1 

Table  2  lists  the  RMSE of the $ field (in meters) a t  the 
end of 12-hr forecast periods up to 72 hr  and  percentage 
errors at  the 12- and 72-hr elapsed times. As was varied 
from 40 km to 250 km' and At was varied from 225 sec to 
an  appropriate  upper  limit  which satisfied the  approximate 
computational  stability  criterion 

j U E (  
At 

restrictions on a 32K-36-bit  word computer  without peripherals, that  is,  tapes,  discs,  ete. 
1 Forty  kilometers wm the  smallest  allowable  value of A8 because of computer  memory 

Approximately 28K words were  available for the program and  variable  storage. 



898 MONTHLY  WEATHER  REVIEW vol. 97, No. 12 

TABLE 2.-RMSE of  the $ field ( in  meters)  at the end of l l -hr  forecast  periods and percentage err;r of the ;field at  the end of 11 hr and 72 hr. 
The percentage error is defined as the ratio of the R M S E  to the average value of the amplitude of 4 with a value of 3.4 m  and is listed following 
zhe RMSE. The bracketed quantity in the At column is the number of time steps needed for a 7%-hr forecast using that value of A t ,  The 
bracketed quantity  with As is the total number of grid points in  the 2000-km square region using that value of As. 

Elapsed time (hr) 
A1 (see) 

I I 24 
- 

36 
" 

72 

As=250 km [81J 

36Ml  1721 
.45351  13.3 2400  [lo81 

13.9 (409%) .91977  27. 

1800  I1441 
900 [2881 

.43677  12.8 

450  15761 

.51657 

.a985 
.41891  12.3 

.56791 .41424  12.2 

.%lo 

259. 
,41766 
.w3s 
.35459 
.35223 

5. x 104 
,68503 
,59349 
.53m 
.52020 

9. x 107 
.48026 
,49279 
.59469 
.61878 

2. x 1011 
.69119 20.3 
.60916 17.9 
.55990 16.5 
54152 15.0 

AS=125 km 12891 

1200  [2161 

.11m .11552  3.4 225  [11521 

.lo961 .11570  3.4 450 15761 

.lMW .11706  3.4 
,333 12881 .lo709 .11638  3.4 

.11163 

.lo975 

.lo832 

.lo797 

.15693 

.161&4 

.16558 

.16641 

.16435 

.15038 
. 1 m  5.4 

.14593 
.19021  5.6 

.I4475  .lo540  5.7 
.lo485  5.7 

A8=62.5 km I10891 

600 14321 

225  111521 
450  1576) 

.041705 .038035 .030313 ,025132  .029845  0.87 
. m 9  .041527 .029804  0.87 

.043266  1.27 

.029768  0.87 
.043791 1-23 
.044279 1.30 .041340  .038715 . o m  .025516 

.025325 .03w1 

h=4 0  km [2601] 

400 [M8] 
225  111521 

,012327  0.36 
.012316  0.36  .010281 

.012694 

.012628 
.015496 
.015596 

.017408 

.017355 
.017627  0.51 
,017755  0.52' 

Since the  system will support  inertia-gravity  waves 
having a phase speed of approximately f 6 5  m sec" 
(L=2000 km) ,  the largest  value of At used satisfied the 
criteria  with U=75 m sec-l. One integration  was per- 
formed where the  stability criterion was violated (As=250 
km, At=3600 sec). In  this case, the RMSE is about 
twice the maximum  value of after  only 24 time  steps. 

For each  integration, we note an oscillation in  the 
values of the RMSE with  time; but  in general, the error 
is increasing with time. The error increase with  time  can 
be attributed  to  the cumulative  error. The possible 
causes of the oscillation will be discussed in a following 
paragraph. 

With As fixed, the RMSE both increases and decreases 
with At, depending  on which elapsed time column one 
examines. Since  amplitudes  are invariant  with time 
(property (11) of the differencing scheme), the  data  in 
table 2 suggest that one is probably better of€ by choosing 
the largest possible A t  which satisfies the  stability cri- 
terion, since there  may  not  be a reduction of the ac- 
cumulated  error associated with a reduction of the time- 
scale truncation  error.  Gates (1959) has shown for the 
centered difference form of the linearized barotropic 
vorticity  equation that after  the  initial  time  steps  the 

average  phase  speed of the computed  solution can  be 
expressed as  a  function of At and As. For values of the 
parameters used here, the change in phase  speed (as 
computed from equation (76) by  Gates (1959)) with 
respect to At is extremely small. Under  the  assumption 
that  the computed  solution phase speed for the  system 
(4a, b,  and c) behaves in a similar  manner, we conclude 
that  the phenomenon described in  the first  sentence of 
this  paragraph  is  not  related  to  property (111). The reason 
for this  behavior will become apparent  in  the discussion 
of the 7-day integrations. 

Since the differencing scheme is second order, the 
truncation  error is on  the order of the  square of the nor- 
malized space  increment.  Therefore,  halving As reduces 
the  truncation error by one-fourth. From  the  values in 
the 72-hr column, we see that  the percentage  error 
behaves  in a similar way as As is  reduced. 

The RMSE for the S and $ fields exhibit the  same over- 
all behavior  as that of the $ field; hence, those  results 
are  not shown here. 

Several  7-day  integrations were performed with fixed 
X=At/As=.OO96 for As=40, 62.5, 125, and 250 km.  The 
results  are shown in figure 2  where the RMSE has been 
plotted at  every  time step for the As=250-km and 125-km 
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FIGURE 2.-RMSE (in  meters) for 7-day integrations]  with X=A.l/As=constant for various  values of As, and for a 3-day integration  with 
As=250 km, At=450 3ec (the  data points are given by circles). Every  time  step has been plotted for the 7-day As=250-km and 125-km 
cases. Alternate  time  steps  are  plotted  for  the As=62.5-km case. The results  for the 24-hr forecast periods are given for the As= 
40-km case. For the 3-day forecast,  the  data  are  plotted at half-hourly intervals. The boxed quantity is the  number of time steps needed 
to complete the 7-day forecast. The  bracketed  quantity is the  relative real time of the  integration  with  the As=250-km case assigned 
the base value of 1. (The lines joining the  data points have  no physical significance.) 

cases, at  alternate time  steps for the As=62.5-km case, 
and a t  24-hr intervals for the As=40-km case. Also shown 
in  the figure are  the  number of time  steps  and  the  relative 
time needed to complete the  integration  with  the 250-km 
case assigned the base value of 1. For  this forecast period, 
the reduction of space  truncation  error  is  still  the  im- 
portant  factor  in reducing the accumulated  error.  Here 
the  space/time  increments  are large enough so that 
truncation  can  be considered the  major  contributor  to 
the  error, that is, the round-off error  incurred in  the  many 
space/time  arithmetic  operations  is not  yet  dominant. 
The  graphs for the 250-,  125-, and 62.5-km cases exhibit 
the time oscillation which was suggested by  the  data  in 
table 2. At first  thought,  one  is  tempted to attribute  the 
oscillation to  the effect of property (111) of the leapfrog 
scheme, but there is another  explanation for this  behavior. 
Although the  initial conditions were given in  terms of the 
meteorologically important wave (e= -2.0827 m sec"), 
the .computational  system will support  inertia-gravity 
waves  as does the  analytic  system.  The  phase speed of 
these waves (for L<5000 km) is  on the order of f 7 0  m 
sec-l, which gives a period of about 8  hr. The oscillat'ions 
in  the  RMSE graphs  have  a period of approximately 8 
hr  which is independent of both As and At. The inde- 
pendence from At is shown by  the  plot of the As=250 km 
and At=450 sec 72-hr forecast data, which has  the same 
period as  the As=250 km  and At=2400 sec forecast data. 
This suggests that  the errors  generated in  the initial 
time  steps excite the  inertia-gravity waves which then 
propagate  through  the system. The use of a small At 
only  delays the excitation  (here  there is a lag of about 1 
hr for the two compared  cases), since it takes longer for 
the smaller  truncation  error  to  ac~cumulate. 

There is the possibility that  the error caused by  the 
computational  change of phase speed is not revealed by 

the  RMSE, which would be  the case if the phase  speed 
error  is  very  small.  But, if the  analytic wave  and  compu- 
tational wave become more out-of-phase as the forecast 
progresses, this  error would manifest itself as  a  monotonic 
increase in  the  RMSE. Also, there  is no indication  through- 
out  the forecast period that  property (IV) of the leapfrog 
scheme (the solution  splitting at  alternate  time  steps) 
has occurred. This  phenomenon could also be hidden 
by  the RMSE, through  the squaring of the error  in the 
formation of the  RMSE. 

THE  INTEGRATIONS IN SET P 

Three 7-day integrations were performed on a  computer 
having a 32-bit word. Of these, one intergration was com- 
puted using double precision-type arithmetic (64-bit 
word). In  all three  integrations the  analytic data were 
computed in double precision. This allows a comparison 
of these  results  with those computed  with the 36-bit 
word. Table 3 shows the  RMSE for the 4 fields (in these 
computations X=.OO96). Here,  the  last  digit  in  the 36- 
bit word result was obtained by rounding off the  stored 
number for output display. All digits of the 32- and 64- 
bit words are certain  (table 1); to compare the  results 
with  those of the 36-bit  word, use the usual  rounding 
convention when rounding to six (or five) digits. The 
differences in  the results  are insignificant. We must 
keep in mind that these  results  apply for a  linear  model; 
a  similar  experiment  with a complex nonlinear  system 
could possibly yield the opposite conclusion. 

4. REMARKS 

During  the course of the  computations  reported  on  in 
this  paper, we  were not concerned prima.rily with the 
question of the  stability  and  accuracy of the finite-differ- 



900 MONTHLY  WEATHER  REVIEW VOl. 97, No. 12 

TABLE 3 ,”RMSE of the 4 field ( in meters) computed on a  S2-bit word 
computer in  single and in  double precision arithmetic and on a 56”bit 
word computer. Time is the elapsed forecast time i n  hours. For  these 
computations, x= A ~ / A S =  constant. 

I I 

(hr) 32-bit word -1- 12 
24 
36 
48 
60 
72 

96 
84 

108 
120 
132 

156 
144 

168 

.010225 60 

.015507 72 

.017635  46 

. o m 1  a5 

.020659 76 

.019077  01 

.019412  13 

”- 

38bit word 32.bit word 

.11505 89 
.010225 .lo449 92 

.015507  .15692 59 
,11163 30 

.017634  ,18309  31 
.15435 56 

.020379 .20326 68 
.17208 68 

.om359 ,19120  75 
.18195  96 

.019074  .19149  46 
.203i9 57 

.019411  .17597 78 
.20765  61 

As=125 km 

64-bit word 

.11705 BB 

.lo449 91 

.11163 29 

.15692 56 

.15435 53 

. 1 m  27 

.17W 69 

.20326 62 

.18195 91 

.203i9 54 

.19120  72 

,19149 30 
.2Oi65 59 
.17597 70 

38bit word 

,1170G 
.lo450 

.15693 
,11163 

. 1 m  

.15435 

.17209 
,20327 

.19121 
,18196 

.20380 
,19149 
.20765 
.17598 

ence scheme used in  integrating  the  system of differential 
equations.  Instead, we considered the practical  aspect of 
the problem, that is, the  interrelation of truncation error 
and round-off error  in the error  accumulated  during the 
integration.  The model, being linear  and free of diabatic 
and viscous effects, allows verification of the integrations 
to  within  the  machine  accuracy of the computed values of 
the  analytic  solutions. Therefore, one is able to  associate 
the overall behavior of the error  with changes in  the space/ 
time  parameters. The error  incurred by evaluating the 
analytic expressions for the tendencies on the  north  and 
south  boundary is a  maximum when At is large,  and  this 
is when the  truncation  error  is at  a  maximum over the 
entire grid. The effects of this  error  are, therefore, second- 
ary  in  the overall evaluation. 

The  rate of error  accumulation is strongly  dependent 
upon  the complexity of the physical system being exam- 
ined.  Here,  although the model is  linear  and basically 
simple, it is determined by a  system of three  equations, 
one of which is strongly space-increment dependent:  the 
3 tendency is given by  the horizontal divergence of the 
perturbation wind shear. This  computation  is  an excellent 
source of truncation  error. 

Several conclusions concerning the computer  application 
of the leapfrog scheme can be made based on these 
integrations: 

1) For a given value of the space  increment,  one should 
choose the largest  value of the time  increment  consistent 
with  the  stability  criterion.  The use of a smaller value of 
At does not always guarantee  a  reduction of the accumu- 
lated  error even though  the  theoretical  truncation  error 
in  the time scale is reduced. The additional  computations 
needed with  a  smaller At will usually introduce compen- 
sating round-off errors. More  important is the effect of 
the excited gravity waves which may be supported  by  the 
system. The  lag  in  the oscillation of the error  curves 
caused by changes in At can give results as those given 

in  table 2: the L‘goodness” of the smaller At depends on 
the forecast period examined. Hence, the  space  truncation 
is the  important  factor  in  the error  accumulation. 

2) Once the characteristic scale (L) of the  motions 
being studied  has been determined,  there  is an  optimal 
range of values of the space  increment (As) in  terms of 
both  “acceptable”  error  accumulation and  computer  time. 
Reduction of the  magnitude of As will reduce the accumu- 
lated error because of the reduction  in both  the space- 
and time-scale truncation  error. But extremely small 
values of AS yield rapid  accumulation of round-off error 
which will dominate  the  truncation  error.2  This  phenom- 
enon is a  function of the  computer word size  and the  total 
number of arithmetic  operations  in the  computation. 
Inspection of table 3 shows that this mas not  the case 
here for either word size. Figure 2 shows that  the slight 
gain in accuracy made in going from As=62.5 km to 
As=40 km was a t  the expense of a three-fold increase in 
computer  running time. If h= As/& then h=0.03, for  this 
experiment yields less than a 2 percent  average  error in  
the 3 field in a reasonable amount of computing  time. As 
mentioned above, that  the round-off error was not  domi- 
nant in  the examined cases is shown by comparing the 
results of the single precision and double precision com- 
putations. Round-off error would become evident  in  the 
accumulated  error for values of As much  smaller than 40 
km,  that is, for h <<0.02, through an increase in  the 
percentage  error of the 3 fields as As decreases. The small 
percentage errors for h-0.03 and  the  large  amounts of 
computation needed for  integrations  with  smaller  values 
of h are  justification  for  not, performing the  computations 
with As <40 km. 

Modifying the governing equations by  the addition of 
nonlinear advection, viscous effects, and  diabatic  effects 
would not  alter  the  magnitude of the  truncation  error if 
the same finite-difference approximations  are used, but 
the round-off error possibly could be  greatly increased. 
(We are assuming that  the system  remains  computa- 
tionally stable with the addition of terms.) 

In  general, one could use the same  technique employed 
here in  other problems to determine feasible choices of 
integration  parameters, regardless of the existence or non- 
existence of comparison analytic  solutions to  the problem 
a t  hand. The choice of space  increment  can be established 
by noting the relative  change in  the computed field 
variable for a short forecast period as  the grid is modified 
from a coarse to a fine one. (The  stability  criterion  deter- 
mines the  time increments,  therefore the number  of  time 
steps required.) As table 2 demonstrates for the problem 
considered here, the  magnitude of the error  is roughly 
determined  in  relatively few time  steps.  Hence, knowledge 
of the absolute  error is not absolutely necessary. 

From a few preliminary  “dry”  runs (in which viscous 
and  diabatic effects can  be suppressed) the “optimal” 

2 This can be amply demonstrated b y  numerically  integrating the ordinary differential 
equation du/&=y, y(z=O)=l, over  the  interval [O, 11, allowing h = h z  to VWY from 10“ 
to 104 and graphing the error at z=1 against the Step Size h.  
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space  increment  can  be chosen on  the basis of 1) computer 
economics (running  times  and  memory  requirements), 
and  more  importantly, 2) the physical  reality of the 
results. The addition of forcing  functions  to the equations 
could possibly alter  the  stability properties of the  system 
and require a change  in  the value of the space  increment. 
The  dry  run equations define a  physical  system whose 
behavior  can  be  qualitatively diagnosed from  the equa- 
tions. The numerical  results of the  dry  run should concur 
with the qualitative reasoning when  suitable  values of 
the  parameters  are used in  the integration. 
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